The angle <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> is an angle where the values of the six trigonometric functions are known. Because this is the case, add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to keep the value the same.

Use the sum formula for cosine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>+</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas cos((2pi)/3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | ninety-seven million seven hundred ten thousand eight hundred thirty-eight |
---|

- 97710838 has 8 divisors, whose sum is
**149684832** - The reverse of 97710838 is
**83801779** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 43
- Digital Root 7

Name | five hundred eighty-four million four hundred thirty-nine thousand five hundred twenty |
---|

- 584439520 has 512 divisors, whose sum is
**6160831488** - The reverse of 584439520 is
**025934485** - Previous prime number is
**83**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | two billion one hundred eleven million nine hundred three thousand nine hundred ninety-four |
---|

- 2111903994 has 32 divisors, whose sum is
**4268088000** - The reverse of 2111903994 is
**4993091112** - Previous prime number is
**1019**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3