Use the Binomial Theorem.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Do you know how to Expand (x+4)^3? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred nine million seven hundred eight thousand six hundred forty |
---|

- 309708640 has 256 divisors, whose sum is
**2849771808** - The reverse of 309708640 is
**046807903** - Previous prime number is
**103**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 37
- Digital Root 1

Name | nine hundred forty-one million six hundred sixty-one thousand three hundred seventy-two |
---|

- 941661372 has 16 divisors, whose sum is
**2824984152** - The reverse of 941661372 is
**273166149** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3

Name | two hundred twenty-five million two hundred four thousand three hundred five |
---|

- 225204305 has 16 divisors, whose sum is
**279465984** - The reverse of 225204305 is
**503402522** - Previous prime number is
**797**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 23
- Digital Root 5