Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>18</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>72</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>72</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>72</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>72</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>72</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>6</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>72</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>6</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>3</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Do you know how to Evaluate square root of -18+ square root of -72? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred forty-two million three hundred thirty-four thousand eight hundred seventy-four |
---|

- 1242334874 has 32 divisors, whose sum is
**2265796800** - The reverse of 1242334874 is
**4784332421** - Previous prime number is
**17**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | nine hundred sixty-three million five hundred eighty-nine thousand seven hundred eighty-eight |
---|

- 963589788 has 32 divisors, whose sum is
**2318423040** - The reverse of 963589788 is
**887985369** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 63
- Digital Root 9

Name | one billion eight hundred fifty-one million nine hundred twenty-two thousand eight hundred three |
---|

- 1851922803 has 16 divisors, whose sum is
**2560989600** - The reverse of 1851922803 is
**3082291581** - Previous prime number is
**29**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3