Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>10</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>5</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>5</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>10</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mn>5</mn><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mn>5</mn><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Let <math><mstyle displaystyle="true"><mi>u</mi><mo>=</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> . Substitute <math><mstyle displaystyle="true"><mi>u</mi></mstyle></math> for all occurrences of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor by grouping.

For a polynomial of the form <math><mstyle displaystyle="true"><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , rewrite the middle term as a sum of two terms whose product is <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>c</mi><mo>=</mo><mn>2</mn><mo>⋅</mo><mo>-</mo><mn>1</mn><mo>=</mo><mo>-</mo><mn>2</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>1</mn></mstyle></math> .

Multiply by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> plus <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Apply the distributive property.

Factor out the greatest common factor from each group.

Group the first two terms and the last two terms.

Factor out the greatest common factor (GCF) from each group.

Factor the polynomial by factoring out the greatest common factor, <math><mstyle displaystyle="true"><mn>2</mn><mi>u</mi><mo>-</mo><mn>1</mn></mstyle></math> .

Factor.

Replace all occurrences of <math><mstyle displaystyle="true"><mi>u</mi></mstyle></math> with <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Remove unnecessary parentheses.

Replace the left side with the factored expression.

Divide each term in <math><mstyle displaystyle="true"><mn>5</mn><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

Divide each term by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosine.

The exact value of <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

Simplify <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from both sides of the equation.

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosine.

The exact value of <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

The final solution is all the values that make <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>5</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> true.

Consolidate the answers.

Do you know how to Solve for x 10cos(x)^2+5cos(x)-5=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred eighty-two million three hundred fifty-five thousand eight hundred forty-five |
---|

- 682355845 has 4 divisors, whose sum is
**818827020** - The reverse of 682355845 is
**548553286** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 46
- Digital Root 1

Name | eight hundred fifty-nine million eight hundred ninety-three thousand forty-four |
---|

- 859893044 has 8 divisors, whose sum is
**1934759358** - The reverse of 859893044 is
**440398958** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 50
- Digital Root 5

Name | six hundred thirty-eight million six hundred sixty-one thousand four hundred eighty-two |
---|

- 638661482 has 8 divisors, whose sum is
**958785636** - The reverse of 638661482 is
**284166836** - Previous prime number is
**1213**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8