Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.

Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.

Replace the known values in the equation.

Raise <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>144</mn><mo>-</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math>

One to any power is one.

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>144</mn><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>1</mn></msqrt></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>144</mn><mo>-</mo><mn>1</mn></msqrt></mstyle></math>

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>144</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>143</mn></msqrt></mstyle></math>

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>143</mn></msqrt></mstyle></math>

Use the definition of sine to find the value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of cosine to find the value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of tangent to find the value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Divide <math><mstyle displaystyle="true"><msqrt><mn>143</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the definition of cotangent to find the value of <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Simplify the value of <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>143</mn></msqrt></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>143</mn></msqrt></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>143</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>143</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>143</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>143</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mn>143</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>143</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Use the definition of cosecant to find the value of <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Simplify the value of <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>12</mn></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>143</mn></msqrt></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>12</mn></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>143</mn></msqrt></mrow><mrow><msqrt><mn>143</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>143</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>143</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>143</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mn>143</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>143</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

This is the solution to each trig value.

Do you know how to Find the Other Trig Values in Quadrant I sec(x)=12? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred seventy-four million two hundred thirteen thousand five hundred thirty-nine |
---|

- 874213539 has 8 divisors, whose sum is
**1175933712** - The reverse of 874213539 is
**935312478** - Previous prime number is
**113**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 42
- Digital Root 6

Name | one billion four hundred thirty-five million seven hundred sixty-four thousand seven hundred eighty-six |
---|

- 1435764786 has 16 divisors, whose sum is
**2897875200** - The reverse of 1435764786 is
**6874675341** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 51
- Digital Root 6

Name | two hundred twenty-eight million five hundred seventy-seven thousand fifty-three |
---|

- 228577053 has 16 divisors, whose sum is
**325169856** - The reverse of 228577053 is
**350775822** - Previous prime number is
**131**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 39
- Digital Root 3