Simplify each term.

Evaluate <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>85</mn><mo>)</mo></mrow></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>85</mn><mo>)</mo></mrow></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>0.99619469</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Simplify terms.

Apply the distributive property.

Multiply <math><mstyle displaystyle="true"><msqrt><mn>14</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.08715574</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0.99619469</mn></mstyle></math> by <math><mstyle displaystyle="true"><msqrt><mn>14</mn></msqrt></mstyle></math> .

Use the Binomial Theorem.

Simplify each term.

Raise <math><mstyle displaystyle="true"><mn>0.32610692</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>0.32610692</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.00368807</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3.72741925</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.02212846</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>0.32610692</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.01130941</mn></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mn>3.72741925</mn><mi>i</mi></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3.72741925</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>13.89365427</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0.16964121</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>13.89365427</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>0.32610692</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>20</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.03468007</mn></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mn>3.72741925</mn><mi>i</mi></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3.72741925</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Factor out <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mi>i</mi></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mi>i</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>51.78747439</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>51.78747439</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.69360158</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>0.32610692</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.10634572</mn></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mn>3.72741925</mn><mi>i</mi></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3.72741925</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>193.033629</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>1.59518593</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>193.033629</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.32610692</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3.72741925</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Factor out <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>719.51726479</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1.95664157</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3.72741925</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor out <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2681.94250408</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Simplify by adding terms.

Subtract <math><mstyle displaystyle="true"><mn>2.35693633</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>0.0012027</mn></mstyle></math> .

Simplify by adding and subtracting.

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>2.35573362</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>307.92452972</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2681.94250408</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>305.56879609</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>35.91987409</mn><mi>i</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>0.08248208</mn><mi>i</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>35.83739201</mn><mi>i</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>1407.83739201</mn><mi>i</mi></mstyle></math> .

Do you know how to Simplify ( square root of 14(cos(85)+isin(85)))^6? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four hundred twenty-three million seventy-two thousand three hundred seventeen |
---|

- 423072317 has 4 divisors, whose sum is
**433391196** - The reverse of 423072317 is
**713270324** - Previous prime number is
**41**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 29
- Digital Root 2

Name | one billion one hundred sixty-eight million six hundred seven thousand one hundred fifty |
---|

- 1168607150 has 16 divisors, whose sum is
**2524191552** - The reverse of 1168607150 is
**0517068611** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | five hundred sixty-nine million three hundred thirty-four thousand seven hundred fifty-three |
---|

- 569334753 has 16 divisors, whose sum is
**764651776** - The reverse of 569334753 is
**357433965** - Previous prime number is
**193**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 45
- Digital Root 9