Multiply the numerator and denominator of <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mo>-</mo><mi>i</mi></mrow></mfrac></mstyle></math> by the conjugate of <math><mstyle displaystyle="true"><mn>2</mn><mo>-</mo><mi>i</mi></mstyle></math> to make the denominator real.

Combine.

Multiply <math><mstyle displaystyle="true"><mn>2</mn><mo>+</mo><mi>i</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the denominator.

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mo>-</mo><mi>i</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>i</mi><mo>)</mo></mrow></mstyle></math> using the FOIL Method.

Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>i</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>i</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Simplify each term.

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Split the fraction <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mo>+</mo><mi>i</mi></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> into two fractions.

Do you know how to Simplify 1/(2-i)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred twenty-nine million nine hundred twenty-nine thousand thirty-eight |
---|

- 729929038 has 32 divisors, whose sum is
**1158561792** - The reverse of 729929038 is
**830929927** - Previous prime number is
**191**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 49
- Digital Root 4

Name | one billion eight hundred fifty-one million six hundred eighty-eight thousand eight hundred seventy-three |
---|

- 1851688873 has 8 divisors, whose sum is
**1879718400** - The reverse of 1851688873 is
**3788861581** - Previous prime number is
**719**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 55
- Digital Root 1

Name | one hundred twenty million nine hundred sixty-eight thousand two hundred sixty-five |
---|

- 120968265 has 16 divisors, whose sum is
**211144896** - The reverse of 120968265 is
**562869021** - Previous prime number is
**11**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 39
- Digital Root 3