To find the x-intercept(s), substitute in <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Solve the equation.

Rewrite the equation as <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> .

Divide each term by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> from both sides of the equation.

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

Simplify the expression to find the second solution.

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Move all terms not containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the right side of the equation.

Subtract <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> from both sides of the equation.

To write <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to every negative angle to get positive angles.

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to find the positive angle.

To write <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine fractions.

Combine <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Consolidate the answers.

x-intercept(s) in point form.

x-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , for any integer <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math>

x-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , for any integer <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math>

To find the y-intercept(s), substitute in <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and solve for <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> .

Solve the equation.

Remove parentheses.

Simplify <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><mi>sin</mi><mrow><mo>(</mo><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

y-intercept(s) in point form.

y-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>-</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math>

y-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>-</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math>

List the intersections.

x-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , for any integer <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math>

y-intercept(s): <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>-</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math>

Do you know how to Find the X and Y Intercepts y=-3sin(x+pi/2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred eighty-four million one hundred eighty-six thousand one hundred thirty-three |
---|

- 1584186133 has 4 divisors, whose sum is
**1584496620** - The reverse of 1584186133 is
**3316814851** - Previous prime number is
**5189**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 40
- Digital Root 4

Name | two hundred eighty-eight million sixty-two thousand three hundred six |
---|

- 288062306 has 32 divisors, whose sum is
**522192000** - The reverse of 288062306 is
**603260882** - Previous prime number is
**229**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 35
- Digital Root 8

Name | sixty-five million six hundred twenty-three thousand nine hundred sixty-six |
---|

- 65623966 has 8 divisors, whose sum is
**98528040** - The reverse of 65623966 is
**66932656** - Previous prime number is
**1109**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 43
- Digital Root 7