Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Consolidate <math><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi><mo>+</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

Verify each of the solutions by substituting them into <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> and solving.

Do you know how to Solve for x sin(x-1)=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion seven hundred sixteen million three thousand four hundred |
---|

- 1716003400 has 128 divisors, whose sum is
**8345825280** - The reverse of 1716003400 is
**0043006171** - Previous prime number is
**2063**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 22
- Digital Root 4

Name | one billion three hundred seventeen million four hundred fifty-four thousand eight hundred fifty-one |
---|

- 1317454851 has 16 divisors, whose sum is
**1849968000** - The reverse of 1317454851 is
**1584547131** - Previous prime number is
**2657**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion eight hundred fourteen million six hundred seventy-one thousand two hundred seventy-seven |
---|

- 1814671277 has 4 divisors, whose sum is
**1815271836** - The reverse of 1814671277 is
**7721764181** - Previous prime number is
**3037**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 44
- Digital Root 8