Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Consolidate <math><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi><mo>+</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

Verify each of the solutions by substituting them into <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> and solving.

Do you know how to Solve for x sin(x-1)=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion one hundred ninety-two million six hundred seventy-two thousand two hundred seventeen |
---|

- 1192672217 has 8 divisors, whose sum is
**1302413952** - The reverse of 1192672217 is
**7122762911** - Previous prime number is
**997**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | five hundred three million one hundred ninety thousand one hundred thirty-one |
---|

- 503190131 has 8 divisors, whose sum is
**515725824** - The reverse of 503190131 is
**131091305** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 23
- Digital Root 5

Name | seven hundred thirty-seven million three hundred sixteen thousand eight hundred twenty-six |
---|

- 737316826 has 8 divisors, whose sum is
**1171032660** - The reverse of 737316826 is
**628613737** - Previous prime number is
**17**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 43
- Digital Root 7