Move <math><mstyle displaystyle="true"><mn>11</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the left side of the equation by subtracting it from both sides.

Factor <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>11</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>11</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>11</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>11</mn><mrow><mo>(</mo><mo>-</mo><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Remove unnecessary parentheses.

Divide each term in <math><mstyle displaystyle="true"><mn>11</mn><mrow><mo>(</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> .

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Divide each term in the equation by <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> with an equivalent expression in the numerator.

Remove parentheses.

Rewrite <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Apply the distributive property.

Combine <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Separate fractions.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from both sides of the equation.

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Simplify the expression to find the second solution.

Simplify <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mi>π</mi></mstyle></math> .

To write <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mi>π</mi></mstyle></math> .

Move the negative in front of the fraction.

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> is positive and coterminal with <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to every negative angle to get positive angles.

Add <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> to find the positive angle.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Divide each term in the equation by <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> with an equivalent expression in the numerator.

Remove parentheses.

Rewrite <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Apply the distributive property.

Combine <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Separate fractions.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

Simplify <math><mstyle displaystyle="true"><mi>π</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

The final solution is all the values that make <math><mstyle displaystyle="true"><mfrac><mrow><mn>11</mn><mrow><mo>(</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>11</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn></mrow><mrow><mn>11</mn></mrow></mfrac></mstyle></math> true.

Consolidate the answers.

Do you know how to Solve for x 11sin(x)^2=11cos(x)^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred eight million six hundred thirty thousand six hundred forty-three |
---|

- 608630643 has 4 divisors, whose sum is
**610203720** - The reverse of 608630643 is
**346036806** - Previous prime number is
**387**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | three hundred sixty-four million three hundred twenty-three thousand eight hundred forty-one |
---|

- 364323841 has 16 divisors, whose sum is
**457344000** - The reverse of 364323841 is
**148323463** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 34
- Digital Root 7

Name | two billion forty-nine million seven hundred twenty-three thousand seven hundred twenty |
---|

- 2049723720 has 128 divisors, whose sum is
**7745906880** - The reverse of 2049723720 is
**0273279402** - Previous prime number is
**1829**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 36
- Digital Root 9