Since <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> is on the right side of the equation, switch the sides so it is on the left side of the equation.

Divide each term in <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Reduce the expression by cancelling the common factors.

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Rewrite <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Multiply by the reciprocal of the fraction to divide by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Write <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as a fraction with denominator <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify.

Divide <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Rewrite <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Multiply by the reciprocal of the fraction to divide by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Write <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as a fraction with denominator <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor out the greatest common factor <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify.

Divide <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify each term.

Rewrite <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Write <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as a fraction with denominator <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify each term.

Factor <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Separate fractions.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide each term in the equation by <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> as a product.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> with an equivalent expression in the numerator.

Remove parentheses.

Multiply <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Apply the distributive property.

Rewrite <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Reorder <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Cancel the common factors.

Replace <math><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mi>t</mi><mi>a</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> with <math><mstyle displaystyle="true"><mi>s</mi><mi>e</mi><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> using the identity <math><mstyle displaystyle="true"><mi>s</mi><mi>e</mi><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><mi>t</mi><mi>a</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

This is the proper way of writing a trigonometric expression raised to an exponent.

Multiply <math><mstyle displaystyle="true"><msup><mi>sec</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

This is the proper way of writing a trigonometric expression raised to an exponent.

Multiply <math><mstyle displaystyle="true"><msup><mi>sec</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

This is the proper way of writing a trigonometric expression raised to an exponent.

Multiply <math><mstyle displaystyle="true"><msup><mi>sec</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

For the two functions to be equal, the arguments of each must be equal.

Subtract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Since <math><mstyle displaystyle="true"><mn>0</mn><mo>=</mo><mn>0</mn></mstyle></math> , the equation will always be true for any value of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

All real numbers

Do you know how to Solve for ? tan(x)+cot(x)=csc(x)sec(x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred forty-five million eight hundred eighty-two thousand eight hundred sixty-five |
---|

- 1345882865 has 16 divisors, whose sum is
**1629783936** - The reverse of 1345882865 is
**5682885431** - Previous prime number is
**1031**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | four hundred forty-seven million two hundred sixty-one thousand two hundred sixty-six |
---|

- 447261266 has 8 divisors, whose sum is
**700061184** - The reverse of 447261266 is
**662162744** - Previous prime number is
**23**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 38
- Digital Root 2

Name | one billion eight hundred ninety-three million nine hundred eighty-six thousand eight hundred fifty-five |
---|

- 1893986855 has 4 divisors, whose sum is
**2272784232** - The reverse of 1893986855 is
**5586893981** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 62
- Digital Root 8