Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from both sides of the equation.

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> from inside the cosine.

The exact value of <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Do you know how to Solve for ? cos(theta)+1=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred sixty-seven million ninety thousand eight hundred eighty-nine |
---|

- 1667090889 has 16 divisors, whose sum is
**2306241280** - The reverse of 1667090889 is
**9880907661** - Previous prime number is
**2851**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | one billion six hundred seventy-one million four hundred eighty-five thousand nine hundred thirty-four |
---|

- 1671485934 has 64 divisors, whose sum is
**3671438400** - The reverse of 1671485934 is
**4395841761** - Previous prime number is
**709**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | one billion two hundred forty-eight million two hundred twenty-six thousand one hundred eighty-eight |
---|

- 1248226188 has 128 divisors, whose sum is
**4269957120** - The reverse of 1248226188 is
**8816228421** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 42
- Digital Root 6