Draw a triangle in the plane with vertices <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and the origin. Then <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is the angle between the positive x-axis and the ray beginning at the origin and passing through <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> . Therefore, <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>arcsin</mi><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></mfrac></mstyle></math> .

Multiply the numerator by the reciprocal of the denominator.

One to any power is one.

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Write <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as a fraction with a common denominator.

Combine the numerators over the common denominator.

Subtract <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>16</mn></mrow><mrow><mn>25</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>16</mn></msqrt></mrow><mrow><msqrt><mn>25</mn></msqrt></mrow></mfrac></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Combine <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Mixed Number Form:

Do you know how to Find the Exact Value cot(arcsin(3/5))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion twenty million nine hundred sixty-two thousand seven hundred ninety-four |
---|

- 1020962794 has 8 divisors, whose sum is
**1532107620** - The reverse of 1020962794 is
**4972690201** - Previous prime number is
**2333**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 40
- Digital Root 4

Name | one billion eight hundred ninety-four million seven hundred twelve thousand four hundred ninety-one |
---|

- 1894712491 has 4 divisors, whose sum is
**2165385712** - The reverse of 1894712491 is
**1942174981** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 46
- Digital Root 1

Name | one billion one hundred twenty-seven million four hundred sixty-one thousand thirty-three |
---|

- 1127461033 has 4 divisors, whose sum is
**1137998160** - The reverse of 1127461033 is
**3301647211** - Previous prime number is
**107**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 28
- Digital Root 1