Draw a triangle in the plane with vertices <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and the origin. Then <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is the angle between the positive x-axis and the ray beginning at the origin and passing through <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> . Therefore, <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>arcsin</mi><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></mfrac></mstyle></math> .

Multiply the numerator by the reciprocal of the denominator.

One to any power is one.

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Write <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as a fraction with a common denominator.

Combine the numerators over the common denominator.

Subtract <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>16</mn></mrow><mrow><mn>25</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>16</mn></msqrt></mrow><mrow><msqrt><mn>25</mn></msqrt></mrow></mfrac></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Combine <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Mixed Number Form:

Do you know how to Find the Exact Value cot(arcsin(3/5))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred sixty-five million nine hundred fifty-one thousand one hundred fifteen |
---|

- 365951115 has 64 divisors, whose sum is
**641024000** - The reverse of 365951115 is
**511159563** - Previous prime number is
**19**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | nine hundred seventy-seven million four hundred thirty-nine thousand three hundred seventy |
---|

- 977439370 has 8 divisors, whose sum is
**1759390884** - The reverse of 977439370 is
**073934779** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 49
- Digital Root 4

Name | one billion one hundred sixty-eight million eight hundred two thousand nine hundred sixty-eight |
---|

- 1168802968 has 32 divisors, whose sum is
**3945544344** - The reverse of 1168802968 is
**8692088611** - Previous prime number is
**25073**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 49
- Digital Root 4