Reorder <math><mstyle displaystyle="true"><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Apply pythagorean identity.

Factor <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Separate fractions.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mi>cos</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Separate fractions.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>57.29868849</mn></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>229.19475399</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>57.28996163</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Exact Value (4cos(1))/(cos(1)^2-1)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | twenty million two hundred thirty-eight thousand three hundred ninety-four |
---|

- 20238394 has 8 divisors, whose sum is
**33117408** - The reverse of 20238394 is
**49383202** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 31
- Digital Root 4

Name | ninety-seven million five hundred fifteen thousand two hundred seventy-nine |
---|

- 97515279 has 8 divisors, whose sum is
**144467120** - The reverse of 97515279 is
**97251579** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 8
- Sum of Digits 45
- Digital Root 9

Name | two billion twenty-three million fifteen thousand four hundred ninety-two |
---|

- 2023015492 has 16 divisors, whose sum is
**4556599920** - The reverse of 2023015492 is
**2945103202** - Previous prime number is
**947**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 28
- Digital Root 1