The angle <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> is an angle where the values of the six trigonometric functions are known. Because this is the case, add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to keep the value the same.

Use the sum formula for cosine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>+</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>45</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>45</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Add <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Expand Using Sum/Difference Formulas cos(45)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion thirty-six million one hundred ninety-four thousand three hundred twenty-seven |
---|

- 2036194327 has 4 divisors, whose sum is
**2037461440** - The reverse of 2036194327 is
**7234916302** - Previous prime number is
**1609**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | four hundred sixty-eight million forty-nine thousand twenty |
---|

- 468049020 has 16 divisors, whose sum is
**1123317792** - The reverse of 468049020 is
**020940864** - Previous prime number is
**15**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 33
- Digital Root 6

Name | four hundred seventy-six million three hundred thirty-three thousand two hundred seventy-four |
---|

- 476333274 has 16 divisors, whose sum is
**974822112** - The reverse of 476333274 is
**472333674** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3