Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>cot</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Since the graph of the function <math><mstyle displaystyle="true"><mi>c</mi><mi>o</mi><mi>t</mi></mstyle></math> does not have a maximum or minimum value, there can be no value for the amplitude.

Amplitude: None

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math>

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mn>1</mn><mo>|</mo></mrow></mrow></mfrac></mstyle></math>

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: None

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift y=cot(x+(7pi)/6)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred fifty-nine million three hundred twenty-one thousand eight hundred fifty-four |
---|

- 659321854 has 8 divisors, whose sum is
**990316080** - The reverse of 659321854 is
**458123956** - Previous prime number is
**743**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 43
- Digital Root 7

Name | five million ninety-nine thousand two hundred eighty-four |
---|

- 5099284 has 32 divisors, whose sum is
**12260160** - The reverse of 5099284 is
**4829905** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 7
- Sum of Digits 37
- Digital Root 1

Name | one billion nine hundred thirty-one million nine hundred ninety-two thousand seven hundred thirteen |
---|

- 1931992713 has 16 divisors, whose sum is
**2167149840** - The reverse of 1931992713 is
**3172991391** - Previous prime number is
**613**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9