Factor <math><mstyle displaystyle="true"><mn>0.01</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>0.06</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>0.01</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>0.01</mn><mi>a</mi><mi>b</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>0.01</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>0.12</mn><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>0.01</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>0.01</mn><mrow><mo>(</mo><mn>6</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>+</mo><mn>0.01</mn><mrow><mo>(</mo><mo>-</mo><mi>a</mi><mi>b</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>0.01</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>0.01</mn><mrow><mo>(</mo><mn>6</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mi>a</mi><mi>b</mi><mo>)</mo></mrow><mo>+</mo><mn>0.01</mn><mrow><mo>(</mo><mo>-</mo><mn>12</mn><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mstyle></math> .

Factor by grouping.

For a polynomial of the form <math><mstyle displaystyle="true"><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , rewrite the middle term as a sum of two terms whose product is <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>c</mi><mo>=</mo><mn>6</mn><mo>⋅</mo><mo>-</mo><mn>12</mn><mo>=</mo><mo>-</mo><mn>72</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mo>-</mo><mn>1</mn></mstyle></math> .

Reorder terms.

Reorder <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mi>a</mi><mi>b</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mi>a</mi><mi>b</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> plus <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn></mstyle></math>

Apply the distributive property.

Remove unnecessary parentheses.

Remove unnecessary parentheses.

Factor out the greatest common factor from each group.

Group the first two terms and the last two terms.

Factor out the greatest common factor (GCF) from each group.

Factor the polynomial by factoring out the greatest common factor, <math><mstyle displaystyle="true"><mn>3</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi></mstyle></math> .

Remove unnecessary parentheses.

Do you know how to Factor 0.06a^2-0.01ab-0.12b^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred twenty million four hundred ninety-one thousand four hundred ninety-two |
---|

- 2120491492 has 32 divisors, whose sum is
**5472982080** - The reverse of 2120491492 is
**2941940212** - Previous prime number is
**269**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 34
- Digital Root 7

Name | one billion five hundred forty-nine million one hundred thirteen thousand seven hundred seventy-five |
---|

- 1549113775 has 16 divisors, whose sum is
**2433517344** - The reverse of 1549113775 is
**5773119451** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | nine hundred eighty-four million seven hundred forty-one thousand nine hundred seventy |
---|

- 984741970 has 64 divisors, whose sum is
**1868359680** - The reverse of 984741970 is
**079147489** - Previous prime number is
**109**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 49
- Digital Root 4