Set the radicand in <math><mstyle displaystyle="true"><msqrt><mi>x</mi></msqrt></mstyle></math> greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to find where the expression is defined.

The domain is all values of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> that make the expression defined.

Interval Notation:

Set-Builder Notation:

Interval Notation:

Set-Builder Notation:

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> in the expression.

Simplify the result.

Remove parentheses.

Rewrite <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The radical expression end point is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> .

Substitute the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> value <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> into <math><mstyle displaystyle="true"><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><msqrt><mi>x</mi></msqrt></mstyle></math> . In this case, the point is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the expression.

Simplify the result.

Remove parentheses.

Any root of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Substitute the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> value <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> into <math><mstyle displaystyle="true"><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><msqrt><mi>x</mi></msqrt></mstyle></math> . In this case, the point is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the expression.

Simplify the result.

Remove parentheses.

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>2</mn></msqrt></mstyle></math> .

The square root can be graphed using the points around the vertex <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mo>-</mo><mn>1.41</mn><mo>)</mo></mrow></mstyle></math>

Do you know how to Graph y=- square root of x? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion forty-eight million nine hundred ninety-eight thousand nine hundred seventy-four |
---|

- 2048998974 has 64 divisors, whose sum is
**4567995648** - The reverse of 2048998974 is
**4798998402** - Previous prime number is
**491**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 60
- Digital Root 6

Name | one billion five hundred ninety-five million eight hundred five thousand one hundred forty-seven |
---|

- 1595805147 has 16 divisors, whose sum is
**1647972480** - The reverse of 1595805147 is
**7415085951** - Previous prime number is
**709**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion five hundred ninety million two hundred sixty-one thousand nine hundred sixty-four |
---|

- 1590261964 has 16 divisors, whose sum is
**3578806728** - The reverse of 1590261964 is
**4691620951** - Previous prime number is
**5347**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7