Simplify each term.

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mi>csc</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Multiply by the reciprocal of the fraction to divide by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mi>sec</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Multiply by the reciprocal of the fraction to divide by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Apply pythagorean identity.

Interchange the variables.

Since <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> cannot be isolated, an inverse cannot be found.

Inverse function cannot be found

Do you know how to Find the Inverse 1/(csc(x)^2)+1/(sec(x)^2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four million five hundred forty-seven thousand three hundred fifty-three |
---|

- 4547353 has 4 divisors, whose sum is
**4745088** - The reverse of 4547353 is
**3537454** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 7
- Sum of Digits 31
- Digital Root 4

Name | one billion two hundred thirty-eight million six hundred seventy-two thousand six hundred forty-four |
---|

- 1238672644 has 32 divisors, whose sum is
**2837442816** - The reverse of 1238672644 is
**4462768321** - Previous prime number is
**103**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | one billion nine hundred seventy-six million eight hundred six thousand six hundred fifty-eight |
---|

- 1976806658 has 4 divisors, whose sum is
**2965209990** - The reverse of 1976806658 is
**8566086791** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 56
- Digital Root 2