Divide each term in <math><mstyle displaystyle="true"><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>⋅</mo><mrow><mo>(</mo><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Simplify the left side of the equation by cancelling the common factors.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Reorder factors in <math><mstyle displaystyle="true"><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>x</mi></mrow></mfrac></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mn>2</mn><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>f</mi><mi>x</mi></mstyle></math> .

Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> to both sides of the equation.

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Move all terms not containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the right side of the equation.

Add <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> to both sides of the equation.

Simplify the right side of the equation.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Consolidate the answers.

Do you know how to Solve for x f(x)*(2sin(x-pi/4))=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred eighty-two million six hundred forty-eight thousand five hundred five |
---|

- 1882648505 has 8 divisors, whose sum is
**2267335752** - The reverse of 1882648505 is
**5058462881** - Previous prime number is
**277**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | five hundred seventy-one million five hundred twenty-eight thousand nine hundred thirty-three |
---|

- 571528933 has 4 divisors, whose sum is
**605148300** - The reverse of 571528933 is
**339825175** - Previous prime number is
**17**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 43
- Digital Root 7

Name | one billion three hundred ten million eight hundred ninety-eight thousand eight hundred ninety-one |
---|

- 1310898891 has 16 divisors, whose sum is
**1806353408** - The reverse of 1310898891 is
**1988980131** - Previous prime number is
**31**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3