Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left side of the equation by subtracting it from both sides.

Use the quadratic formula to find the solutions.

Substitute the values <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mo>-</mo><mn>12</mn></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi><mo>=</mo><mi>k</mi><mo>-</mo><mn>5</mn></mstyle></math> into the quadratic formula and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>k</mi><mo>-</mo><mn>5</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Apply the distributive property.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>144</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>20</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>164</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn><mi>k</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>164</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn><mrow><mo>(</mo><mo>-</mo><mi>k</mi><mo>)</mo></mrow><mo>+</mo><mn>4</mn><mrow><mo>(</mo><mn>41</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mn>12</mn><mo>±</mo><mn>2</mn><msqrt><mo>-</mo><mi>k</mi><mo>+</mo><mn>41</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The final answer is the combination of both solutions.

Do you know how to Solve for x x^2-12x+k=5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred six million three hundred thousand two hundred seventy-five |
---|

- 806300275 has 32 divisors, whose sum is
**1293594624** - The reverse of 806300275 is
**572003608** - Previous prime number is
**11**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 31
- Digital Root 4

Name | four hundred ninety-six million five hundred seventy-two thousand eighty-four |
---|

- 496572084 has 128 divisors, whose sum is
**2067310080** - The reverse of 496572084 is
**480275694** - Previous prime number is
**59**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9

Name | one billion seven hundred thirteen million ninety-four thousand four hundred twenty-five |
---|

- 1713094425 has 8 divisors, whose sum is
**1818600960** - The reverse of 1713094425 is
**5244903171** - Previous prime number is
**21**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 36
- Digital Root 9