Simplify each term.

Apply the distributive property.

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Move the negative in front of the fraction.

Apply the distributive property.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>3</mn><mi>d</mi><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mo>-</mo><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move the negative in front of the fraction.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>9</mn><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify each term.

Simplify the numerator.

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mi>d</mi><mo>⋅</mo><mn>2</mn><mo>-</mo><mn>9</mn><mi>d</mi><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mi>d</mi><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn><mi>d</mi><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mi>d</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mo>-</mo><mn>9</mn><mo>⋅</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>27</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Move <math><mstyle displaystyle="true"><mo>-</mo><mn>25</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Move the negative in front of the fraction.

To write <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>27</mn></mstyle></math> .

Graph each side of the equation. The solution is the x-value of the point of intersection.

Do you know how to Solve Graphically 1/3*(d-4)-3/2*(3d-3)=7/12? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred forty-five million one hundred sixty-six thousand four hundred eighty-three |
---|

- 1945166483 has 8 divisors, whose sum is
**2096435376** - The reverse of 1945166483 is
**3846615491** - Previous prime number is
**1291**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | one billion nine hundred thirty-two million seven hundred sixteen thousand seven hundred thirty |
---|

- 1932716730 has 16 divisors, whose sum is
**3534110976** - The reverse of 1932716730 is
**0376172391** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion one hundred seventy-nine million forty-two thousand eight hundred fifty-two |
---|

- 1179042852 has 32 divisors, whose sum is
**3809215872** - The reverse of 1179042852 is
**2582409711** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3