Subtract <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> from both sides of the equation.

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>6</mn><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify each term.

Move the negative in front of the fraction.

Dividing two negative values results in a positive value.

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Simplify the right side of the equation.

Combine the numerators over the common denominator.

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>5</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Combine using the product rule for radicals.

Reorder factors in <math><mstyle displaystyle="true"><mo>±</mo><mfrac><mrow><msqrt><mrow><mo>(</mo><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>⋅</mo><mn>5</mn></msqrt></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> .

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Set the radicand in <math><mstyle displaystyle="true"><msqrt><mn>5</mn><mrow><mo>(</mo><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msqrt></mstyle></math> greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to find where the expression is defined.

Divide each term by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>5</mn><mrow><mo>(</mo><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to both sides of the inequality.

Take the square root of both sides of the inequality to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution. Since this is an inequality, flip the direction of the inequality sign on the <math><mstyle displaystyle="true"><mo>-</mo></mstyle></math> portion of the solution.

The complete solution is the result of both the positive and negative portions of the solution.

The domain is all values of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> that make the expression defined.

Interval Notation:

Set-Builder Notation:

Since the domain is not all real numbers, <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>5</mn><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>6</mn></mstyle></math> is not continuous over all real numbers.

Not continuous

Do you know how to Determine if Continuous x^2-5y^2=6? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred one million eight hundred thirty-four thousand eight hundred forty |
---|

- 101834840 has 64 divisors, whose sum is
**415463904** - The reverse of 101834840 is
**048438101** - Previous prime number is
**137**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 29
- Digital Root 2

Name | six hundred four million six hundred fifty-one thousand five hundred seventy |
---|

- 604651570 has 8 divisors, whose sum is
**1088372844** - The reverse of 604651570 is
**075156406** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 34
- Digital Root 7

Name | two billion eighty-four million nine hundred ninety-two thousand two hundred thirty-nine |
---|

- 2084992239 has 32 divisors, whose sum is
**3105423360** - The reverse of 2084992239 is
**9322994802** - Previous prime number is
**11**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3