Rewrite the equation in vertex form.

Complete the square for <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>1</mn></mstyle></math> .

Use the form <math><mstyle displaystyle="true"><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , to find the values of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Consider the vertex form of a parabola.

Substitute the values of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> into the formula <math><mstyle displaystyle="true"><mi>d</mi><mo>=</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mstyle></math> .

Simplify the right side.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Move the negative in front of the fraction.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Find the value of <math><mstyle displaystyle="true"><mi>e</mi></mstyle></math> using the formula <math><mstyle displaystyle="true"><mi>e</mi><mo>=</mo><mi>c</mi><mo>-</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mi>a</mi></mrow></mfrac></mstyle></math> .

Simplify each term.

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Move the negative in front of the fraction.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mo>-</mo><mfrac><mrow><mn>9</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>9</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

To write <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Substitute the values of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>e</mi></mstyle></math> into the vertex form <math><mstyle displaystyle="true"><mi>a</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>e</mi></mstyle></math> .

Set <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> equal to the new right side.

Use the vertex form, <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>h</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>k</mi></mstyle></math> , to determine the values of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> .

Since the value of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> is negative, the parabola opens down.

Opens Down

Find the vertex <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mstyle></math> .

Find <math><mstyle displaystyle="true"><mi>p</mi></mstyle></math> , the distance from the vertex to the focus.

Find the distance from the vertex to a focus of the parabola by using the following formula.

Substitute the value of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> into the formula.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Find the focus.

The focus of a parabola can be found by adding <math><mstyle displaystyle="true"><mi>p</mi></mstyle></math> to the y-coordinate <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> if the parabola opens up or down.

Substitute the known values of <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>p</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> into the formula and simplify.

Find the axis of symmetry by finding the line that passes through the vertex and the focus.

Find the directrix.

The directrix of a parabola is the horizontal line found by subtracting <math><mstyle displaystyle="true"><mi>p</mi></mstyle></math> from the y-coordinate <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> of the vertex if the parabola opens up or down.

Substitute the known values of <math><mstyle displaystyle="true"><mi>p</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> into the formula and simplify.

Use the properties of the parabola to analyze and graph the parabola.

Direction: Opens Down

Vertex: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math>

Focus: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math>

Axis of Symmetry: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Directrix: <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Direction: Opens Down

Vertex: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math>

Focus: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math>

Axis of Symmetry: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Directrix: <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Simplify by adding and subtracting.

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

The <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> value at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Simplify by adding and subtracting.

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>16</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

The <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> value at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mn>4</mn></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by adding the exponents.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Simplify by adding and subtracting.

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> value at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Raising <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to any positive power yields <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Simplify by adding and subtracting.

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

The <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> value at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Graph the parabola using its properties and the selected points.

Graph the parabola using its properties and the selected points.

Direction: Opens Down

Vertex: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math>

Focus: <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math>

Axis of Symmetry: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Directrix: <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Do you know how to Graph -x^2-3x-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion four hundred thirty-six million eighty-two thousand seven hundred twenty-eight |
---|

- 1436082728 has 32 divisors, whose sum is
**4964994468** - The reverse of 1436082728 is
**8272806341** - Previous prime number is
**41**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | one billion six hundred twenty-four million seven hundred twelve thousand nine hundred seventy-one |
---|

- 1624712971 has 16 divisors, whose sum is
**1958376960** - The reverse of 1624712971 is
**1792174261** - Previous prime number is
**521**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 40
- Digital Root 4

Name | one billion four hundred ten million eight hundred ninety-four thousand two hundred one |
---|

- 1410894201 has 8 divisors, whose sum is
**1881489600** - The reverse of 1410894201 is
**1024980141** - Previous prime number is
**6983**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 30
- Digital Root 3