For any <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , vertical asymptotes occur at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>n</mi><mi>π</mi></mstyle></math> , where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer. Use the basic period for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , to find the vertical asymptotes for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>135</mn><mo>)</mo></mrow></mstyle></math> . Set the inside of the tangent function, <math><mstyle displaystyle="true"><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>a</mi><mi>tan</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> equal to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to find where the vertical asymptote occurs for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>135</mn><mo>)</mo></mrow></mstyle></math> .

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>135</mn></mstyle></math> from both sides of the equation.

Divide each term by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mn>135</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Move the negative in front of the fraction.

Set the inside of the tangent function <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>+</mo><mn>135</mn></mstyle></math> equal to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>135</mn></mstyle></math> from both sides of the equation.

Divide each term by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mn>135</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Move the negative in front of the fraction.

The basic period for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>135</mn><mo>)</mo></mrow></mstyle></math> will occur at <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , where <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> are vertical asymptotes.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The vertical asymptotes for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>135</mn><mo>)</mo></mrow></mstyle></math> occur at <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , and every <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>π</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer.

Tangent only has vertical asymptotes.

No Horizontal Asymptotes

No Oblique Asymptotes

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>π</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer

No Horizontal Asymptotes

No Oblique Asymptotes

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>π</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer

Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>tan</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Since the graph of the function <math><mstyle displaystyle="true"><mi>t</mi><mi>a</mi><mi>n</mi></mstyle></math> does not have a maximum or minimum value, there can be no value for the amplitude.

Amplitude: None

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Move the negative in front of the fraction.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: None

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>π</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer

Amplitude: None

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>135</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Do you know how to Graph y=4tan(2x+135)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred thirty million six hundred twenty-two thousand forty-four |
---|

- 730622044 has 16 divisors, whose sum is
**1650780000** - The reverse of 730622044 is
**440226037** - Previous prime number is
**239**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 28
- Digital Root 1

Name | eight hundred sixty-two million twenty-eight thousand five hundred sixty-eight |
---|

- 862028568 has 128 divisors, whose sum is
**4116486528** - The reverse of 862028568 is
**865820268** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9

Name | one billion one hundred thirty-two million eleven thousand six hundred fifty-four |
---|

- 1132011654 has 16 divisors, whose sum is
**2362459392** - The reverse of 1132011654 is
**4561102311** - Previous prime number is
**23**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 24
- Digital Root 6