For any <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , vertical asymptotes occur at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>n</mi><mi>π</mi></mstyle></math> , where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer. Use the basic period for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , to find the vertical asymptotes for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> . Set the inside of the tangent function, <math><mstyle displaystyle="true"><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>a</mi><mi>tan</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> equal to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to find where the vertical asymptote occurs for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Set the inside of the tangent function <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> equal to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The basic period for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> will occur at <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , where <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> are vertical asymptotes.

Find the period <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> to find where the vertical asymptotes exist.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The vertical asymptotes for <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> occur at <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> , and every <math><mstyle displaystyle="true"><mi>π</mi><mi>n</mi></mstyle></math> , where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is an integer.

There are only vertical asymptotes for tangent and cotangent functions.

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> for any integer <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math>

No Horizontal Asymptotes

No Oblique Asymptotes

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> for any integer <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math>

No Horizontal Asymptotes

No Oblique Asymptotes

Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>tan</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Since the graph of the function <math><mstyle displaystyle="true"><mi>t</mi><mi>a</mi><mi>n</mi></mstyle></math> does not have a maximum or minimum value, there can be no value for the amplitude.

Amplitude: None

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: None

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> for any integer <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math>

Amplitude: None

Period: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Do you know how to Graph 4(tan(x))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred twelve million four hundred twenty-nine thousand one hundred sixty-seven |
---|

- 2112429167 has 4 divisors, whose sum is
**2127848496** - The reverse of 2112429167 is
**7619242112** - Previous prime number is
**137**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | one billion one hundred seventeen million forty-seven thousand four hundred fifty-three |
---|

- 1117047453 has 8 divisors, whose sum is
**1494096288** - The reverse of 1117047453 is
**3547407111** - Previous prime number is
**317**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 33
- Digital Root 6

Name | one hundred thirty-eight million three hundred fifty-four thousand five hundred eleven |
---|

- 138354511 has 4 divisors, whose sum is
**141298272** - The reverse of 138354511 is
**115453831** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 31
- Digital Root 4