Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> in the expression.

Simplify the result.

Multiply <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>14</mn></mrow></mfrac></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>14</mn></mrow></mfrac></mstyle></math> in the expression.

Simplify the result.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>14</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> in the expression.

Simplify the result.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>14</mn></mrow></mfrac></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>14</mn></mrow></mfrac></mstyle></math> in the expression.

Simplify the result.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>14</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> in the expression.

Simplify the result.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Subtract full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

List the points in a table.

The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.

Amplitude: <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Do you know how to Graph 3sin(7x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred eighty-three million eight hundred thirty-eight thousand eight hundred sixty |
---|

- 883838860 has 32 divisors, whose sum is
**2388757392** - The reverse of 883838860 is
**068838388** - Previous prime number is
**1021**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 52
- Digital Root 7

Name | one billion thirteen million sixty-three thousand nine hundred seventy-five |
---|

- 1013063975 has 32 divisors, whose sum is
**1623931200** - The reverse of 1013063975 is
**5793603101** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | one billion five hundred thirty-three million six hundred ninety-three thousand five hundred eight |
---|

- 1533693508 has 16 divisors, whose sum is
**3452413680** - The reverse of 1533693508 is
**8053963351** - Previous prime number is
**2179**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7