Set the argument of the logarithm equal to zero.

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Take the cube root of both sides of the equation to eliminate the exponent on the left side.

Simplify <math><mstyle displaystyle="true"><mroot><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></mroot></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming real numbers.

The vertical asymptote occurs at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> .

Vertical Asymptote: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Vertical Asymptote: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the expression.

Simplify the result.

Logarithm base <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Convert <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to decimal.

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> in the expression.

Simplify the result.

Logarithm base <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> of <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Convert <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to decimal.

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the expression.

Simplify the result.

Simplify <math><mstyle displaystyle="true"><mn>3</mn><mi>log</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> by moving <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> inside the logarithm.

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mi>log</mi><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mstyle></math> .

Convert <math><mstyle displaystyle="true"><mi>log</mi><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mstyle></math> to decimal.

The log function can be graphed using the vertical asymptote at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> and the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>10</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>0.90308998</mn><mo>)</mo></mrow></mstyle></math> .

Vertical Asymptote: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Do you know how to Graph f(x)=3 log of x? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two hundred eighty-five million four hundred fifty-three thousand seven hundred ninety-two |
---|

- 285453792 has 256 divisors, whose sum is
**2593820880** - The reverse of 285453792 is
**297354582** - Previous prime number is
**9**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9

Name | forty-seven million five hundred sixteen thousand six hundred forty-eight |
---|

- 47516648 has 16 divisors, whose sum is
**160368714** - The reverse of 47516648 is
**84661574** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 41
- Digital Root 5

Name | seven hundred sixteen million eight thousand eight hundred twenty-four |
---|

- 716008824 has 64 divisors, whose sum is
**2747487600** - The reverse of 716008824 is
**428800617** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9