Set the argument of the logarithm equal to zero.

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Take the cube root of both sides of the equation to eliminate the exponent on the left side.

Simplify <math><mstyle displaystyle="true"><mroot><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></mroot></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming real numbers.

The vertical asymptote occurs at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> .

Vertical Asymptote: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Vertical Asymptote: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the expression.

Simplify the result.

Logarithm base <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Convert <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to decimal.

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> in the expression.

Simplify the result.

Logarithm base <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> of <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Convert <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to decimal.

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the expression.

Simplify the result.

Simplify <math><mstyle displaystyle="true"><mn>3</mn><mi>log</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> by moving <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> inside the logarithm.

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mi>log</mi><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mstyle></math> .

Convert <math><mstyle displaystyle="true"><mi>log</mi><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mstyle></math> to decimal.

The log function can be graphed using the vertical asymptote at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> and the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>10</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>0.90308998</mn><mo>)</mo></mrow></mstyle></math> .

Vertical Asymptote: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Do you know how to Graph f(x)=3 log of x? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred seventy-two million seven hundred thirty-two thousand six hundred fifty-one |
---|

- 1372732651 has 8 divisors, whose sum is
**1388076704** - The reverse of 1372732651 is
**1562372731** - Previous prime number is
**1303**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | six hundred sixty-nine million six hundred seventy-three thousand five hundred twenty-three |
---|

- 669673523 has 8 divisors, whose sum is
**673969968** - The reverse of 669673523 is
**325376966** - Previous prime number is
**1097**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 47
- Digital Root 2

Name | one hundred sixty-five million six hundred eighty-two thousand four hundred twenty |
---|

- 165682420 has 32 divisors, whose sum is
**451777176** - The reverse of 165682420 is
**024286561** - Previous prime number is
**101**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 34
- Digital Root 7