Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> in the formula for period.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Find the vertical shift <math><mstyle displaystyle="true"><mi>d</mi></mstyle></math> .

Vertical Shift: <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math>

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>1</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>7</mn></mstyle></math> .

Find the point at <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>2</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the expression.

Simplify the result.

Simplify each term.

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

List the points in a table.

The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> (<math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math>

Do you know how to Graph g(x)=4sin(pix)-3? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | fifty-eight million two hundred twenty-nine thousand seven hundred fifty-three |
---|

- 58229753 has 4 divisors, whose sum is
**58332660** - The reverse of 58229753 is
**35792285** - Previous prime number is
**569**

- Is Prime? no
- Number parity odd
- Number length 8
- Sum of Digits 41
- Digital Root 5

Name | one billion six hundred eighty-one million seven hundred forty-six thousand four hundred forty-seven |
---|

- 1681746447 has 8 divisors, whose sum is
**2246062000** - The reverse of 1681746447 is
**7446471861** - Previous prime number is
**601**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | seven hundred thirty-nine million six hundred eighty-seven thousand three hundred eighty-two |
---|

- 739687382 has 16 divisors, whose sum is
**1268468640** - The reverse of 739687382 is
**283786937** - Previous prime number is
**3677**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 53
- Digital Root 8