To convert radians to degrees, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> , since a full circle is <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> or <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians.

Simplify the numerator.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>55</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.42814800</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.51563667</mn></mstyle></math> .

Simplify the denominator.

Remove parentheses.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.08748866</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>55</mn><mo>)</mo></mrow></mstyle></math> to get <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>0.08748866</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1.42814800</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>0.12494676</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>0.12494676</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>0.87505323</mn></mstyle></math> .

Simplify the expression.

Divide <math><mstyle displaystyle="true"><mo>-</mo><mn>1.51563667</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.87505323</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Write <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> as a fraction with denominator <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1.73205080</mn></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> to get <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1.73205080</mn><mo>⋅</mo><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1.73205080</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>311.76914536</mn></mstyle></math> .

Move the negative in front of the fraction.

Factor <math><mstyle displaystyle="true"><mn>311.76914536</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>311.76914536</mn></mstyle></math> .

Multiply by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Separate fractions.

Replace <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> with an approximation.

Divide <math><mstyle displaystyle="true"><mn>311.76914536</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3.14159265</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>99.23920117</mn></mstyle></math> to get <math><mstyle displaystyle="true"><mo>-</mo><mn>99.23920117</mn></mstyle></math> .

Convert to a decimal.

For angles smaller than <math><mstyle displaystyle="true"><mn>0</mn><mi>°</mi></mstyle></math> , add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to the angle until the angle is larger than <math><mstyle displaystyle="true"><mn>0</mn><mi>°</mi></mstyle></math> .

The angle is in the third quadrant.

Quadrant <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Do you know how to Find the Quadrant of the Angle (tan(175)-tan(55))/(1+tan(175)tan(55))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion one hundred thirteen million three hundred forty-eight thousand nine hundred fifty-six |
---|

- 1113348956 has 8 divisors, whose sum is
**2505035160** - The reverse of 1113348956 is
**6598433111** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | six hundred six million two hundred thirty-two thousand eight hundred sixteen |
---|

- 606232816 has 64 divisors, whose sum is
**3507490512** - The reverse of 606232816 is
**618232606** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 34
- Digital Root 7

Name | one billion two hundred fifty-two million one hundred ten thousand three hundred eighty-two |
---|

- 1252110382 has 4 divisors, whose sum is
**1878165576** - The reverse of 1252110382 is
**2830112521** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 25
- Digital Root 7