To convert radians to degrees, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> , since a full circle is <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> or <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>29</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> into the numerator.

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>29</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>29</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>30</mn></mstyle></math> .

Convert to a decimal.

For angles smaller than <math><mstyle displaystyle="true"><mn>0</mn><mi>°</mi></mstyle></math> , add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to the angle until the angle is larger than <math><mstyle displaystyle="true"><mn>0</mn><mi>°</mi></mstyle></math> .

The angle is in the third quadrant.

Quadrant <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Do you know how to Find the Quadrant of the Angle -(29pi)/6? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.