To find the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math>

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

To write <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>36</mn></mrow><mrow><mn>36</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>36</mn></mrow><mrow><mn>36</mn></mrow></mfrac></mstyle></math> .

Simplify the expression.

Combine the numerators over the common denominator.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>36</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>36</mn></msqrt></mrow></mfrac></mstyle></math> .

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>6</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><mfrac><mrow><mn>6</mn><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn><msqrt><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mn>144</mn><mo>+</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> .

Move the negative in front of the fraction.

Approximate the result.

Do you know how to Find the Cosine (-2,pi/6)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four hundred eighty-three million one hundred eighty-three thousand one hundred seventy-one |
---|

- 483183171 has 16 divisors, whose sum is
**513676800** - The reverse of 483183171 is
**171381384** - Previous prime number is
**349**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | four hundred thirty-one million six hundred forty-one thousand seven hundred sixty-one |
---|

- 431641761 has 4 divisors, whose sum is
**575522352** - The reverse of 431641761 is
**167146134** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 33
- Digital Root 6

Name | one billion nine hundred eighty-four million eight hundred twenty-five thousand one hundred seventy-one |
---|

- 1984825171 has 8 divisors, whose sum is
**2269152000** - The reverse of 1984825171 is
**1715284891** - Previous prime number is
**2999**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 46
- Digital Root 1