To find the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>6</mn><mo>,</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>6</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>6</mn><mo>,</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn></mstyle></math>

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Add <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><msqrt><mn>39</mn></msqrt></mstyle></math> into a single radical.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>39</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>39</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>1</mn></mrow><mrow><mn>13</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>1</mn></msqrt></mrow><mrow><msqrt><mn>13</mn></msqrt></mrow></mfrac></mstyle></math> .

Any root of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>13</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>13</mn></msqrt></mrow><mrow><msqrt><mn>13</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>13</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>13</mn></msqrt></mrow><mrow><msqrt><mn>13</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>13</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>13</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>13</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>13</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>13</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>13</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Approximate the result.

Do you know how to Find the Sine (-6, square root of 3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion one hundred seventy-nine million nine hundred forty-six thousand seventy-nine |
---|

- 1179946079 has 8 divisors, whose sum is
**1278509232** - The reverse of 1179946079 is
**9706499711** - Previous prime number is
**163**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 53
- Digital Root 8

Name | one billion eight hundred ninety-one million fifty-one thousand one hundred ninety-six |
---|

- 1891051196 has 8 divisors, whose sum is
**4254865200** - The reverse of 1891051196 is
**6911501981** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | one billion nine hundred seven million one hundred thirty thousand sixty-five |
---|

- 1907130065 has 4 divisors, whose sum is
**2288556084** - The reverse of 1907130065 is
**5600317091** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 32
- Digital Root 5