Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn><msqrt><mn>66</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>66</mn></msqrt></mrow><mrow><msqrt><mn>66</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn><msqrt><mn>66</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>66</mn></msqrt></mrow><mrow><msqrt><mn>66</mn></msqrt></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><msqrt><mn>66</mn></msqrt></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>66</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>66</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>66</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>66</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>66</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>66</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>66</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Evaluate 5/(2 square root of 66)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred two million nine hundred sixty thousand five hundred fifty-eight |
---|

- 1302960558 has 8 divisors, whose sum is
**2605921128** - The reverse of 1302960558 is
**8550692031** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion five hundred two million seven hundred sixty-two thousand ninety-seven |
---|

- 1502762097 has 8 divisors, whose sum is
**2008333440** - The reverse of 1502762097 is
**7902672051** - Previous prime number is
**431**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | seven hundred ninety-eight million six hundred seventy-eight thousand two hundred fifty-five |
---|

- 798678255 has 32 divisors, whose sum is
**1289991168** - The reverse of 798678255 is
**552876897** - Previous prime number is
**277**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 57
- Digital Root 3