Simplify each term in the equation in order to set the right side equal to <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> . The standard form of an ellipse or hyperbola requires the right side of the equation be <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola.

Match the values in this hyperbola to those of the standard form. The variable <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> represents the x-offset from the origin, <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> represents the y-offset from origin, <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> .

Find the distance from the center to a focus of the hyperbola by using the following formula.

Substitute the values of <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the formula.

Simplify.

Raise <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>100</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>10</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

The first focus of a hyperbola can be found by adding <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> to <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> .

Substitute the known values of <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> into the formula and simplify.

The second focus of a hyperbola can be found by subtracting <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> from <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> .

Substitute the known values of <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> , <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> , and <math><mstyle displaystyle="true"><mi>k</mi></mstyle></math> into the formula and simplify.

The foci of a hyperbola follow the form of <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>±</mo><msqrt><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>)</mo></mrow></mstyle></math> . Hyperbolas have two foci.

Do you know how to Find the Foci ((y-2)^2)/64-((x-4)^2)/36=1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred thirty-six million four hundred twenty-three thousand seven hundred ninety |
---|

- 1236423790 has 8 divisors, whose sum is
**1907625384** - The reverse of 1236423790 is
**0973246321** - Previous prime number is
**35**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | seven hundred forty-four million four hundred eleven thousand three hundred seventy-one |
---|

- 744411371 has 4 divisors, whose sum is
**812085144** - The reverse of 744411371 is
**173114447** - Previous prime number is
**11**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 32
- Digital Root 5

Name | one billion two million eight hundred three thousand sixty-seven |
---|

- 1002803067 has 8 divisors, whose sum is
**1019278080** - The reverse of 1002803067 is
**7603082001** - Previous prime number is
**2609**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 27
- Digital Root 9